

I Semester B.C.A. Degree Examination, November/December 2010 (Y2K8 Scheme) BCA 104 : DIGITAL ELECTRONICS

Time: 3 Hours Max. Marks: 60

Instruction: Answer all the Sections.

SECTION - A

- I. Answer any ten questions. Each question carries 1 mark. (1×10=10)
 - 1) What is a semiconductor? Give example.
 - 2) What is the total resistance R, when two resistors R_1 and R_2 are connected in parallel?
 - 3) State Kirchoff's current law.
 - 4) What is an active element in an electrical network? Give example.
 - 5) Explain sinusoidal alternating voltage with a neat wave form.
 - 6) What is form factor?
 - 7) Add (DEF)₁₆ and (876)₁₆.
 - 8) Expand EBCDIC.
 - 9) Prove that $x + \overline{x}y = x + y$ using boolean laws.
 - 10) What is a sequential logic circuit?
 - 11) Convert (11011), to gray code.
 - 12) Convert –13 in 2's complement using 8 bits.

SECTION - B

II. Answer any 5 questions. Each question carries 3 marks.

- $(3 \times 5 = 15)$
- 13) State ohm's law. Calculate resistance in the circuit given voltage = 50 V and current = 5A.
- 14) Two resistors R_1 and R_2 are connected in series having resultant resistance of 18Ω and when connected in parallel having resultant resistance of 4Ω . Find the value of the resistors R_1 and R_2 .
- 15) Derive an expression for RMS value of an alternating current.
- 16) Convert $(0.625)_{10}$ to binary, octal and hexadecimal.
- 17) Realize AND, OR and X-OR gates using NAND gates only.
- 18) Perform $(111)_2 (10101)_2$, using 2's complement.
- 19) Explain with a neat logic diagram 4: 1 multiplexer.
- 20) Explain a clocked SR flipflop with preset and clear inputs.

SECTION - C

III. Answer any 5 questions. Each question carries 7 marks.

 $(7 \times 5 = 35)$

7

7

- 21) Simplify the Boolean function $F(A, B, C, D) = \sum (0.2, 4.5, 6.7, 8.10, 13.15)$ using K-maps. Draw the equivalent logic circuit using basic gates.
- 22) Find the single-error correcting code for the message 1010 using even parity system applying Hamming code technique.
- 23) a) Explain Master-slave flip flop with a neat logic diagram. (4+3)
 - b) What are the applications of flip flops?
- 24) a) Explain half wave rectifier with a neat circuit diagram. (4+3)
 - b) What are filter circuits? Explain.

25) a) State and explain superposition theorem.

(3+4)

b) Apply Norton's theorem to find the current in 8Ω resistor.

26) a) Explain PISO shift register with a neat block diagram.

(4+3)

- b) What are the applications of Registers?
- 27) a) Explain with a neat block diagram the working of a 4-bit BCD Adder. (4+3)
 - b) State and prove De-morgan's theorem.
- 28) Derive equations to convert a Delta Network to a Star Network.

7