www.onlinebu.com

I Semester B.Sc. Examination, October/November 2012 (Semester Scheme) (NS) (2011-12 and onwards) ELECTRONICS (Paper – I) Basic Electronics

Time: 3 Hours

Max. Marks: 70

Instruction: Answer any five questions from Part A, four questions from Part B and five sub division from Part C.

PART-A

Answer any five questions:

 $(8 \times 5 = 40)$

- 1. a) Write the expression for effective resistance when Resistor R₁ and R₂ are connected in
 - 1) Series
 - 2) Parallel.
 - b) Derive an expression for charging of capacitor through a resistor using a dc circuit and define Time Constant. (2+6)
- 2. a) State and explain how to apply superposition theorem to a resistive network.
 - b) Define frequency and RMS value of a.c. signal.

(6+2)

- 3. a) Derive the expression for Ripple Factor and efficiency of Full Wave Rectifier.
 - b) What is a filter? Name the different types of filters used in rectifier circuits.

(6+2)

P.T.O.

- 4. a) Explain the formation of P type semiconductor with neat diagram.
 - b) Explain the process of zener breakdown and avalanche breakdown in a diode.

(4+4)

- 5. a) Explain the working of an npn transistor with relevant diagram.
 - b) Explain the working of zener diode as line regulator.

(4+4)

- 6. a) Explain the procedure to draw the input and output characteristics curve for a transistor in CE mode.
 - b) Define $'\alpha'$ and $'\beta'$ of a Transistor.

(6+2)

- 7. a) Explain the working of a CE amplifier and draw its frequency response curve.
 - b) Draw the circuit of CC amplifier and mention its applications.

(6+2)

- 8. a) Explain the self complementing property of Excess-3 code.
 - b) With an example explain steps to convert
 - I. Gray code to Binary
 - II. Binary to Gray code.

ww.on

PART-B

Answer any four questions:

- 9. For the given R-C circuit, calculate the
 - 1) Current flowing in the circuit and
 - 2) Voltage drop across R.

. www.onlinebu.com http://www.onlinebu.com

≨ 2**Ö**)

5

5

 For the given zener regulator circuit, calculate maximum and minimum values of zener diode current.

11. Calculate the dc biasing voltage V_{CE} and collector current for the given circuit.

Given :
$$V_{BE} = 0.7 \text{ V}$$
 and $\beta = 200$

12. For the circuit shown below calculate the value of input impedance, power gain, voltage gain and output impedance

Given : $\beta = 80$ and $r'e = 25\Omega$.

13. Convert the following:

a)
$$(25.75)_{10} = ()_2$$

b)
$$(1011011.1011)_2 = ()_{10}$$

c)
$$(10110111.1111)_2 = ()_{16}$$
.

14. Subtract the following by 2's complement method.

www.onlinebu.com

5

5

PART-C

Answer any five subdivisions:

 $(5 \times 2 = 10)$

15. a) Explain why capacitor blocks dc and allows ac.

2

b) Draw Thevenivis' equivalent circuit for the given network.

2

c) Determine the magnitude of $V_{\mbox{\scriptsize A}}$ in the circuit.

2

d) Identify the circuit element and draw the symbol of the element.

- e) Is transistor a current control device? Justify your answer.
- f) C.C. amplifier is also called as an emitter follower. Justify.
- g) Complete the series.

79 F _H ____H __H __H

2

2

2

www.onlinebu.com

I Semester B.Sc. Examination, October/November 2012 (Semester Scheme) (NS) (Prior to 2011-12) ELECTRONICS (Paper – I) Basic Electronics

Time: 3 Hours Max. Marks: 60

Instruction: Answer any five questions from Part A, four questions from Part B and five sub divisions from Part C.

PART-A

Answer any five questions:

 $(5 \times 6 = 30)$

- 1. a) Define the terms frequency and rms value of an alternating voltage.
 - b) Derive expressions for current and impedance of a series RC circuit connected to an ac source. (2+4)
- 2. a) State Kirchhoff's voltage and current law.
 - b) With the help of circuit diagrams explain the steps to Thevenize a resistive network. (2+4)
- 3. a) What is a rectifier?
 - b) Draw the circuit diagram of a full wave rectifier and explain its working.
 Sketch its input and output waveforms. (1+5)
- 4. a) Explain how the process of avalanche and zener break down occur in a diode.
 - b) What is a varactor diode? Mention its applications. (4+2)

Semester B.Sc. Examination, October/November 2012 (Semester Scheme) (NS) (Prior to 2011-12) ELECTRONICS (Paper – I) Basic Electronics

Time: 3 Hours

Max. Marks: 60

Instruction: Answer any five questions from Part A, four questions from Part B and five sub divisions from Part C.

PART-A

Answer any five questions:

(5×6=30)

- 1. a) Define the terms frequency and rms value of an alternating voltage.
 - b) Derive expressions for current and impedance of a series RC circuit connected to an ac source. (2+4)
- 2. a) State Kirchhoff's voltage and current law.
 - b) With the help of circuit diagrams explain the steps to Thevenize a resistive network.
- 3. a) What is a rectifier?
 - b) Draw the circuit diagram of a full wave rectifier and explain its working.

 Sketch its input and output waveforms. (1+5)
- 4. a) Explain how the process of avalanche and zener break down occur in a diode.
 - b) What is a varactor diode? Mention its applications. (4+2)

- 5. a) Why is transistor called so?
 - b) With a proper biasing arrangement explain the operation of an NPN transistor.

(2+4)

- 6. a) Define the terms DC load line and Q point related to a transistor.
 - b) Explain the operation of transistor as a switch.

(2+4)

- 7. a) Mention the classification of amplifiers based on
 - i) Coupling and
 - ii) Transistor configuration.
 - b) Draw and explain the frequency response curve of a C.E. amplifier.

(2+4)

- 8. a) What is an Excess-3 code? Explain with example.
 - b) Explain the steps to convert a decimal number into a binary number with an example. Consider the integral and fractional parts of decimal number.

PART-B

Answer any four questions:

(4×5=20)

9. Determine the value of R_L in the circuit shown below so that it receives the maximum power. Calculate the maximum power delivered to the load.

.

5

www.onlinebu.com

5

 Find the input voltage variation range for the given circuit to act as a voltage regulator.

11. Determine I_{CQ} and V_{CEQ} for the voltage divider bias circuit shown. Given V_{BE} = 0.7V and β =120.

12. For the amplifier circuit shown determine the voltage gain and zi. Given $\beta=50$ and $V_{BE}=0.7V$.

5

13. a) Convert $50.765_{(10)}$ into binary and hexa decimal.

b) Convert $B6E_{(16)}$ into decimal.

(4+1)

14. a) Subtract $46_{(10)}$ from $58_{(16)}$ using 2's complement method and express the result in hexa decimal.

b) Perform the following mathematical operation $5C_{(16)}+2D_{(16)}$. (3+2)

PART-C

Answer any five sub divisions:

 $(5 \times 2 = 10)$

15. a) What are active components? Give two examples.

2

b) The instantaneous voltage and current through a component is given by

 $v = 400 \sin(150 t + 90^{\circ})$

 $i = 4 \sin (150 t)$

Identify the component and calculate its value.

2

- c) What is the voltage across R? If
 - i) Diode is in good condition
 - ii) Diode is open.

- 2

- d) Under what biasing conditions are the following diodes normally operated?
 - i) Zener diode
 - ii) Photo diode.
- e) Why is transistor called bipolar?

2

2

- f) Mention the characteristic features of a CC amplifier which make it a useful circuit.
- 2

g) Mention the invalid codes in BCD code system.

-

I Semester B.Sc. Examination, October/November 2012 (Semester Scheme) (O.S) **ELECTRONICS (Paper - I) Electronics Fundamentals**

Time: 3 Hours

Max. Marks: 60

Instruction: Answer any five questions from Part A, any four questions from Part B and any five sub divisions from Part C.

PART-A

Answer any five questions:

 $(5 \times 6 = 30)$

- 1. a) Explain the color code for carbon resistor giving their values, tolerance and rating.
 - b) Obtain an expression for the energy stored in a capacitor.

- 2. a) Draw the labelled block diagram of CRO.
 - b) What is an ideal voltage source? How do you convert a current source into a voltage source?
- 3. Derive an expression for the growth of current in a series RL circuit excited by a DC voltage source. Represent it graphically.

6

- 4. a) Define the following terms in a sinusoidal wave
 - 1) Time Period
 - 2) Peak value
 - rms value
 - Power factor.
 - b) Give the expressions for Inductive Reactance and Capacitive Reactance.

(4+2)

- 5. a) What is meant by electrical resonance?
 - b) Obtain an expression for the resonant frequency of series RLC circuit. What happens to the resonant frequency when the value of R is changed?

(2+4)

- - 6. a) State and explain Kirchoff's Current Law.
 - b) Derive the relations to convert a T-resistive network into an equivalent π -resistive network. (2+4)
 - 7. State and explain the following theorems with respect to a dc resistive network.
 - a) Thevenin's theorem
 - b) Reciprocity theorem.

(3+3)

- 8. a) Explain the formation of depletion layer in a pn junction diode. What happens to the depletion layer under forward and reverse bias?
 - b) Mention the application of a zener diode.

(4+2)

www.onlinebu.com

PART-B

Answer any four questions. Each question carries five marks.

 $(4 \times 5 = 20)$

5

9. In the following circuit determine the current flowing through $\,2\Omega\,$ resistor.

28V

5

10. Find the branch currents I_1 and I_2 using node voltage method.

 $\frac{T_1}{H^{\Omega}}$ $\frac{T_2}{H^{\Omega}}$ $\frac{B_1}{T}$ $\frac{T_2}{H^{\Omega}}$ $\frac{B_2}{T^{2V}}$

11. For the given network find the current through and voltage across the load $R_{\rm L}$ using Millman's theorem.

- 12. A parallel resonant circuit consists of $R=50\Omega$, $L=50\mu H$ and C=200pF calculate the
 - i) Resonant frequency
 - ii) Impedance at resonance
 - iii) Band width
 - iv) Quality factor.

13. In the given circuit find the current, impedance and phase angle.

5

14. Determine value of $R_{\rm L}$ for maximum power transfer in the following circuit. Also calculate the maximum power delivered to the load.

5

www.onlinebu.com

PART-C

Answer any five sub divisions:

 $(5 \times 2 = 10)$

15. a) Can we use oscilloscope to measure current? Justify.

2

b) Intrinsic semiconductor behaves as an insulator at room temperature. Explain.

- c) What is the difference between Thevenin's resistance and Norton resistance?
- 2

d) For the circuit shown below, find the value of R_1 and V_2 .

- e) Electrolytic capacitors must be connected with proper polarity. Why?
- f) Write the equivalent circuit for an ideal p-n junction diode.
- g) Why voltmeter should always be connected in parallel across an element?