No. of Printed Pages: 2

GN-235

III Semester B.Sc. Examination, December - 2019 (Fresh+Repeaters) (CBCS 2018-19 and Onwards)

STATISTICS - III

STATISTICAL INFERENCE - I

Time: 3 Hours

Max. Marks: 70

Instructions: (i) Answer **any ten** sub-divisions from section-A and **any five** questions from section-B.

(ii) Scientific calculator is permitted.

SECTION - A

I. Answer any ten sub-divisions from the following:

10x2=20

https://www.onlinebu.com

- (a) Define standard error and mention its use.
 - (b) Explain the following terms w.r.t. statistical inference:
 - (i) Random Sample
- (ii) Parameter Space
- (c) Given T is an estimator of a parameter θ , then prove that M.S.E (T) $\geq V(T)$.
- (d) Define Consistency.
- (e) Write an expression for Fisher's Information in terms of expectation.
- (f) Define Minimum Variance Unbiased Estimator (MVUE).
- (g) Obtain Method of Moment Estimator (MME) of P in Bernoulli B(I, P) distribution.
- (h) What is interval estimation? Explain.
- (i) Write $(1-\alpha)100\%$ Confidence Interval (CI) for population mean μ , when sampling is from Normal $N(\mu, \sigma_0^2)$ distribution.
- (j) Write $(1-\alpha)100\%$ C.I. for the difference of two Binomial population proportions (P_1-P_2)
- (k) Explain simulation.
- (1) Mention the disadvantages of simulation.

SECTION - B

II. Answer any five questions from the following:

5x10=50

- 2. (a) Obtain sampling distribution of sample mean \bar{x} , when the random 4+6 sample of size 'n' is drawn from normal (μ, σ_0^2) distribution.
 - (b) Derive the moment generating function of Chi-Square distribution and hence establish additive property.

P.T.O.

GM-23

https://www.onlinebu.com

- 3. (a) Derive odd ordered central moments of t-distribution with n degree of freedom and hence find its mean.
 - (b) Obtain mean of F-distribution.
- 4. (a) If $x_1, x_2, x_3, \ldots, x_n$ is a random sample of size 'n' from N(0, σ^2), 5+5 then show that $\frac{1}{n} \sum_{i=1}^{n} x_i^2$ is an unbiased estimator for σ^2 .
 - (b) State sufficient condition for consistency and hence obtain consistent estimator of μ in $N(\mu, \sigma^2)$ distribution.
- 5. (a) For a Cauchy population show that sample median is a consistent 3+7 estimator.
 - (b) Let $x_1, x_2, x_3,..., x_n$ is a random sample of size 'n' from $N(\mu, \sigma^2)$ distribution. Show that sample mean is more efficient than sample median.
- 6. (a) State Neyman Factorization theorem. Obtain a sufficient statistic 5+5 for p in Binomial B(n, p) distribution.
 - (b) Derive the Minimum Variance Bound (MVB) for the estimator in Poisson $P(\lambda)$ distribution and show that sample mean attains it.
- 7. (a) Write the properties of Maximum Likelihood Estimator (MLE). Obtain 5+5 the MLE of parameter p of Binomial B(n, p) distribution.
 - (b) Obtain moment estimator of α and β in uniform (α, β) distribution.
- 8. (a) Obtain $(1-\alpha)100\%$ C.I. for the population variance σ^2 when the 6+4 sample is drawn from $N(\mu, \sigma^2)$ distribution (sample size is small).
 - (b) Obtain $(1-\alpha)100\%$ C.I. for the population correlation coefficient.
- 9. (a) Explain the method of generating a random sample from exponential 5+5 distribution.
 - (b) Explain the method of generating random samples from $N(\mu, \sigma^2)$ distribution.