V Semester B.Sc. Examination, October/November 2012
 (Semester Scheme)
 PHYSICS - V
 Gravitation, Space Physics and Electronics

Time : 3 Hours
Max. Marks : 60
Instruction : Answer any five questions in Part A, any four in Part B and five in Part C.
PART-A

Answer any five of the following:

1. a) Define gravitational potential at a point.
b) Obtain an expression for the gravitational potential due to a uniform solid sphere at a point outside the sphere.
2. a) What is escape velocity? Explain.
b) Derive an expression for the escape velocity of a body on the earth.
3. a) What is relative humidity ?
b) Outline the vertical structure of the atmosphere.
4. a) What are hybrid parameters of a transistor?
b) Draw an AC equivalent circuit of a CE transistor amplifier and derive expressions for voltage gain and current gain using h-parameters.
5. a) Define any two JFET parameters.
b) With the help of a circuit diagram describe the action of a zener diode as a voltage regulator.
6. a) What is an operational amplifier? Why is it called so ?
b) Explain with circuit diagram, how an op-Amp can be used as an integrator. Obtain expression for its output voltage.
7. a) What are the essential parts of an osciliator?
b) Explain with circuit diagram, the working of a Hartley oscillator. Write the expression for its frequency.
8. a) What is NOR gate? Write the truth table for NOR.
b) With the help of a circuit diagram and truth table, explain the working of a half adder circuit using logic gates.
PART-B

Solve any four problems :

9. A satellite is circling round the earth at a height of 1000 Km above the earth's surface. Calculate the orbital velocity and period of revolution. Given, Radius of the earth $=6,400 \mathrm{Km} ; \mathrm{g}=9.8 \mathrm{~ms}^{-2}$.
10. In a transistor the base current and the collector carrent are $100 \mu \mathrm{~A}$ and 2 mA respectively. Calculate I_{E}, α and β of the transistor.
11. In a Colpitt's oscillator, the inductance and capacitances in the tuned circuit are $16 \mathrm{mH}, 0.016 \mu \mathrm{~F}$ and $0.018 \mu \mathrm{~F}$. Calculate the frequency of the osciliator.
12. a) Convert $[675]_{8}$ to binary.
b) Convert $[\text { AF. } 2 \mathrm{~F}]_{16}$ to decimal and binary equivalents.
13. Prove that

$$
(A+B)(\bar{A} \bar{C}+C)(\bar{B}+\bar{A} C)=\bar{A} B
$$

Draw the logic circuit for the output.
14). Find the output of a three input summing op-Amp given the following data
$\mathrm{V}_{1}=2 \mathrm{~V}, \mathrm{~V}_{2}=3 \mathrm{~V}, \mathrm{~V}_{3}=-1 \mathrm{~V}$
$R_{1}=15 \mathrm{~K} \Omega, R_{2}=60 \mathrm{~K} \Omega, R_{3}=600 \mathrm{~K} \Omega, R_{f}=60 \mathrm{~K} \Omega$.
Draw the diagram.

PART-C

Answer any five of the following :
15. a) Saturn is about sixtimes farther from the sun than the Mars. Which of the two planets has (a) longer period of revolution (b) larger orbital speed?
b) A junction transistor is called a bipolar transistor. Why?
c) Explain the concept of virtual ground in op-amp circuit.
d) An oscillator is an amplifier with infinite gain. Justify.
e) Does electric field exist across the depletion layer of a semiconductor diode ? Explain.
f) A NAND gate is called a universal gate. Justify.
g) Do gravity waves appear only in water? Explain.
h) A zener diode is a constant voltage source. Explain.

