

VI Semester B.Sc. Examination, May/June 2013 (Semester Scheme) PHYSICS – VIII Relativity, Astrophysics and Nuclear Physics

Time: 3 Hours Max. Marks: 60

Instructions: 1) Part -A, answer any five of the following ($5 \times 6 = 30$).

2) Part -B, answer **any four** of the following $(4 \times 5 = 20)$.

3) Part – C, answer any five of the following $(2 \times 5 = 10)$.

PART-A

Answer any five of the following:

 $(5 \times 6 = 30)$

- 1. a) What is proper time? Write an expression for proper time in terms of relativistic time and velocities.
 - b) Derive Einstein's mass-energy relation.

(2+4)

- 2. Describe with a diagram the Michelson-Morley experiment and explain the physical significance of negative results. Derive an expression for fringe shift.
- 6

3. State and prove Virial theorem.

6

- 4. a) What is photon diffusion time?
 - b) Derive an expression for gravitational potential energy of a star.

(1+5)

- 5. a) What are the probable end stages in the life time of a star?
 - b) Show that luminosity of a star is directly proportional to cube of its mass.

(2+4)

6. Assuming the relation between impact parameter and scattering angle derive Rutherford's formula.

6

- 7. a) Write the conditions for alpha decay.
 - b) State Geiger-Nuttal law.
 - c) Write a note on Pauli's neutrino hypothesis.

(2+1+3)

8. Explain with a diagram, the principle, construction and working of a cyclotron. Obtain an expression for the maximum energy of a particle coming out of a cyclotron.

6

P.T.O.

PART-B.

Answer any four of the following:

 $(4 \times 5 = 20)$

- 9. The star nearest to the earth is at a distance of 4.32 light years. If a space traveller were to make a trip from the earth to the star at a uniform speed of 0.9 c how long would it take according to an earth clock? How long would it take according to the space traveller's clock?
- 10. An electron at rest mass 9.1×10⁻³¹ kg is moving with a speed of 0.99 c. What is total energy? Find the ratio of Newtonian kinetic energy to the relativistic energy.
- 11. If the apparent and absolute magnitudes of the star white dwarf-sirius B are +8.6 and +11.4 respectively, calculate its distance from the earth.
- 12. The luminosity of a star is 10⁴ times that of the sun and its surface temperature is 3000 K. How much larger is the radius of the star compared to that of the sun?
- 13. Find the kinetic energy of the alpha particle emitted in the alpha-decay of Ra²²⁶. Given $m(Ra^{226}) = 226.0254064 \text{ u}$, $m(Rn^{222}) = 222.017574 \text{ u}$.
- 14. The Q value of the Na²³ (n, α) F²⁰ reaction is 6.4 MEV. Determine the threshold energy of the neutrons for this reaction. Given m, = 1.008665 u, m, = 22.9898 u.

PART-C

15. Answer any five of the following:

 $(5 \times 2 = 10)$

- a) A moving clock ticks more slowly than a clock at rest. Justify.
- b) Can massless particle exist? Comment.
- c) Can a material particle move with a velocity equal to c? Explain.
- d) Is apparent magnitude of a star smaller or larger than its absolute magnitude if it is closer than 10 par secs? Explain.
- e) Greater the mass of a star, shorter its lifetime. Justify.
- f) Why is Aston's mass spectrograph called a velocity focussing mass spectrograph?
- g) Why is quenching necessay in a GM counter? Explain.
- h) Not all nuclei are radioactive. Comment.