VI Semester B.Sc. Examination, May/June 2013 (Semester Scheme) PHYSICS - VIII
 Relativity, Astrophysics and Nuclear Physics

Time: 3 Hours
Max. Marks : 60
Instructions: 1) Part - A, answerany five of the following ($5 \times 6=30$).
2) Part $-B$, answerany four of the following $(4 \times 5=20)$.
3) Part -C, answerany five of the following $(2 \times 5=10)$.
PART-A

Answer any five of the following :

1. a) What is proper time ? Write an expression for proper time in terms of relativistic time and velocities.
b) Derive Einstein's mass-energy relation.
2. Describe with a diagram the Michelson-Morley experiment and explain the physical significance of negative results. Derive an expression for fringe shift.
3. State and prove Virial theorem.
4. a) What is photon diffusion time ?
b) Derive an expression for gravitational potential energy of a star.
5. a) What are the probable end stages in the life time of a star?
b) Show that luminosity of a star is directly proportional to cube of its mass.
6. Assuming the relation between impact parameter and scattering angle derive Rutherford's formula.
7. a) Write the conditions for alpha decay.
b) State Geiger-Nuttal law.
c) Write a note on Pauli's neutrino hypothesis.
8. Explain with a diagram, the principle, construction and working of a cyclotron. Obtain an expression for the maximum energy of a particle coming out of a cyclotron.
P.T.O.
PART-B.

Answer any four of the following :
9. The star nearest to the earth is at a distance of 4.32 light years. If a space traveller were to make a trip from the earth to the star at a uniform speed of 0.9 c how long would it take according to an earth clock ? How long would it take according to the space traveller's clock ?
10. An electron at rest mass $9.1 \times 10^{-31} \mathrm{~kg}$ is moving with a speed of 0.99 c . What is total energy ? Find the ratio of Newtonian kinetic energy to the relativistic energy.
11. If the apparent and absolute magnitudes of the star white dwarf-sirius B are +8.6 and +11.4 respectively, calculate its distance from the earth.
12. The luminosity of a star is 10^{4} times that of the sun and its surface temperature is 3000 K . How much larger is the radius of the star compared to that of the sun?
13. Find the kinetic energy of the alpha particle emitted in the alpha-decay of Ra^{226}. Given $m\left(\operatorname{Ra}^{226}\right)=226.0254064 u, m\left(R^{222}\right)=222.017574 u$.
14. The Q value of the $\mathrm{Na}^{23}(\mathrm{n}, \alpha) \mathrm{F}^{20}$ reaction is -6.4 MEV . Determine the threshold energy of the neutrons for this reaction. Given $m_{i}=1.008665 u, m_{t}=22.9898 u$.
PART - C
15. Answer any five of the following :
a) A moving clock ticks more slowly than a clock at rest. Justify.
b) Can massless particle exist ? Comment.
c) Can a material particle move with a velocity equal to c ? Explain.
d) Is apparent magnitude of a star smaller or larger than its absolute magnitude if it is closer than 10 par secs? Explain.
e) Greater the mass of a star, shorter its lifetime. Justify.
f) Why is Aston's mass spectrograph called a velocity focussing mass spectrograph?
g) Why is quenching necessay in a GM counter? Explain.
h) Not all nuclei are radioactive. Comment.

